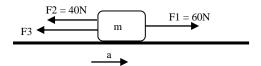
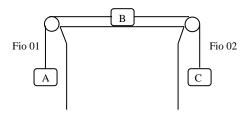



1) Na figura abaixo, determine o módulo da força resultante. Dados: sen $\alpha = 0.6$ e cos $\alpha = 0.8$

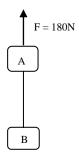

2) Na figura abaixo, encontre o módulo da força resultante entre as forças F_1 e F_2 .

- 3) Considere duas forças, F_1 e F_2 , de módulos, respectivamente, 30N e 50N, aplicadas a um mesmo corpo. A força resultante certamente tem módulo $\bf R$ tal que:
 - a) $20N \le R \le 80N$
- b) R > 50N
- c) R = 80N
- d) R > 30N
- e) $30N \le R \le 50N$
- 4) Na figura abaixo, desprezando-se a resistência do ar, encontre a intensidade da força tensora aplicada no fio que liga o bloco A, de massa $m_A = 5.0$ kg ao bloco B de massa $m_B = 7.0$ N.

5) Na figura abaixo, são aplicadas ao bloco de massa m = 2.0kg três forças: F_1 , F_2 e F_3 , sendo, F_1 e F_2 , forças conhecidas e F_3 uma força desconhecida, conforme a figura abaixo.



Sabendo-se que o bloco desloca-se da esquerda para a direita, com aceleração constante $a=3.0 \text{m/s}^2$, encontre o valor da terceira força F_3 .


6) A figura mostra três blocos de massas m₁ = 15kg, m₂ = 25kg e m₃ = 10kg, interligados por fios ideais. O atrito entre os blocos e a superfície horizontal é desprezível. Se o bloco de massa m₃ é tracionado por uma força de módulo T = 20N, encontre o módulo da força F indicada.

7) Na figura abaixo, os blocos A, B e C, de massas $m_A = 3.0 \text{kg}$, $m_B = 3.0 \text{kg}$ e $m_C = 4.0 \text{kg}$, encontram-se interligados por fios ideias e de massas desprezíveis. Determine as intensidades das forças tensoras aplicadas nos fios 1 e 2.

8) No esquema na figura abaixo, determine as intensidades das força tensora que une o bloco A ao bloco B. Considere as massas de A e B, respectivamente iguais a 4,0kg e 5,0kg.

